Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Encephale ; 46(3S): S93-S98, 2020 Jun.
Article in French | MEDLINE | ID: covidwho-1065058

ABSTRACT

Although the "panic" word has been abundantly linked to the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic in the press, in the scientific literature very few studies have considered whether the current epidemic could predispose to the onset or the aggravation of panic attacks or panic disorder. Indeed, most studies thus far have focused on the risk of increase and aggravation of other psychiatric disorders as a consequence of the SARS-CoV-2 epidemic, such as obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and generalized anxiety disorder (GAD). Yet, risk of onset or aggravation of panic disorder, especially the subtype with prominent respiratory symptoms, which is characterized by a fear response conditioning to interoceptive sensations (e.g., respiratory), and hypervigilance to these interoceptive signals, could be expected in the current situation. Indeed, respiratory symptoms, such as coughs and dyspnea, are among the most commonly associated with the SARS-CoV-2 (59-82% and 31-55%, respectively), and respiratory symptoms are associated with a poor illness prognosis. Hence given that some etiological and maintenance factors associated with panic disorder - i.e., fear conditioning to abnormal breathing patterns attributable or not to the COVID-19 (coronavirus disease 2019), as well as hypervigilance towards breathing abnormalities - are supposedly more prevalent, one could expect an increased risk of panic disorder onset or aggravation following the COVID-19 epidemic in people who were affected by the virus, but also those who were not. In people with the comorbidity (i.e., panic disorder or panic attacks and the COVID-19), it is particularly important to be aware of the risk of hypokalemia in specific at-risk situations or prescriptions. For instance, in the case of salbutamol prescription, which might be overly used in patients with anxiety disorders and COVID-19, or in patients presenting with diarrhea and vomiting. Hypokalemia is associated with an increased risk of torsade de pointe, thus caution is required when prescribing specific psychotropic drugs, such as the antidepressants citalopram and escitalopram, which are first-line treatments for panic disorder, but also hydroxyzine, aiming at anxiety reduction. The results reviewed here highlight the importance of considering and further investigating the impact of the current pandemic on the diagnosis and treatment of panic disorder (alone or comorbid with the COVID-19).


Subject(s)
Betacoronavirus , Coronavirus Infections/psychology , Pandemics , Panic Disorder/psychology , Pneumonia, Viral/psychology , Anxiety/etiology , Anxiety/psychology , Anxiety Disorders/drug therapy , Anxiety Disorders/epidemiology , Anxiety Disorders/physiopathology , Anxiety Disorders/psychology , COVID-19 , Catastrophization , Comorbidity , Coronavirus Infections/epidemiology , Dyspnea/etiology , Dyspnea/psychology , Female , Humans , Hypokalemia/etiology , Male , Panic Disorder/drug therapy , Panic Disorder/epidemiology , Panic Disorder/physiopathology , Pneumonia, Viral/epidemiology , Psychotropic Drugs/adverse effects , Psychotropic Drugs/therapeutic use , Renin-Angiotensin System/physiology , Respiration/drug effects , SARS-CoV-2 , Stress, Psychological/etiology , Stress, Psychological/physiopathology , Terminology as Topic , Torsades de Pointes/chemically induced , Torsades de Pointes/etiology
2.
Eur J Clin Invest ; 51(2): e13428, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-845033

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has affected millions of people worldwide resulting in significant morbidity and mortality. Arrhythmias are prevalent and reportedly, the second most common complication. Several mechanistic pathways are proposed to explain the pro-arrhythmic effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A number of treatment approaches have been trialled, each with its inherent unique challenges. This rapid systematic review aimed to examine the current incidence and available treatment of arrhythmias in COVID-19, as well as barriers to implementation. METHODS: Our search of scientific databases identified relevant published studies from 1 January 2000 until 1 June 2020. We also searched Google Scholar for grey literature. We identified 1729 publications of which 1704 were excluded. RESULTS: The incidence and nature of arrhythmias in the setting of COVID-19 were poorly documented across studies. The cumulative incidence of arrhythmia across studies of hospitalised patients was 6.9%. Drug-induced long QT syndrome secondary to antimalarial and antimicrobial therapy was a significant contributor to arrhythmia formation, with an incidence of 14.15%. Torsades de pointes (TdP) and sudden cardiac death (SCD) were reported. Treatment strategies aim to minimise this through risk stratification and regular monitoring of corrected QT interval (QTc). CONCLUSION: Patients with SARS-CoV-2 are at an increased risk of arrhythmias. Drug therapy is pro-arrhythmogenic and may result in TdP and SCD in these patients. Risk assessment and regular QTc monitoring are imperative for safety during the treatment course. Further studies are needed to guide future decision-making.


Subject(s)
Arrhythmias, Cardiac/etiology , COVID-19/complications , Long QT Syndrome/chemically induced , Anti-Arrhythmia Agents/therapeutic use , Anti-Bacterial Agents/adverse effects , Antimalarials/adverse effects , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/therapy , Atrial Fibrillation/epidemiology , Atrial Fibrillation/etiology , Atrial Fibrillation/therapy , Atrial Flutter/epidemiology , Atrial Flutter/etiology , Atrial Flutter/therapy , Azithromycin/adverse effects , Bradycardia/epidemiology , Bradycardia/etiology , Bradycardia/therapy , Cardiac Pacing, Artificial/methods , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Electric Countershock/methods , Hospitalization , Humans , Hydroxychloroquine/adverse effects , Incidence , Long QT Syndrome/epidemiology , Long QT Syndrome/therapy , SARS-CoV-2 , Tachycardia, Ventricular/epidemiology , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/therapy , Torsades de Pointes/epidemiology , Torsades de Pointes/etiology , Torsades de Pointes/therapy , Ventricular Fibrillation/epidemiology , Ventricular Fibrillation/etiology , Ventricular Fibrillation/therapy , COVID-19 Drug Treatment
3.
Heart Rhythm ; 17(9): 1472-1479, 2020 09.
Article in English | MEDLINE | ID: covidwho-353443

ABSTRACT

Chloroquine and hydroxychloroquine are now being widely used for treatment of COVID-19. Both medications prolong the QT interval and accordingly may put patients at increased risk for torsades de pointes and sudden death. Published guidance documents vary in their recommendations for monitoring and managing these potential adverse effects. Accordingly, we set out to conduct a systematic review of the arrhythmogenic effect of short courses of chloroquine or hydroxychloroquine. We searched on MEDLINE and Embase, as well as in the gray literature up to April 17, 2020, for the risk of QT prolongation, torsades, ventricular arrhythmia, and sudden death with short-term chloroquine and hydroxychloroquine usage. This search resulted in 390 unique records, of which 41 were ultimately selected for qualitative synthesis and which included data on 1515 COVID-19 patients. Approximately 10% of COVID-19 patients treated with these drugs developed QT prolongation. We found evidence of ventricular arrhythmia in 2 COVID-19 patients from a group of 28 treated with high-dose chloroquine. Limitations of these results are unclear follow-up and possible publication/reporting bias, but there is compelling evidence that chloroquine and hydroxychloroquine induce significant QT-interval prolongation and potentially increase the risk of arrhythmia. Daily electrocardiographic monitoring and other risk mitigation strategies should be considered in order to prevent possible harms from what is currently an unproven therapy.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Death, Sudden/etiology , Hydroxychloroquine/therapeutic use , Long QT Syndrome/etiology , Pneumonia, Viral/drug therapy , Torsades de Pointes/etiology , Antimalarials/therapeutic use , COVID-19 , Coronavirus Infections/complications , Humans , Pandemics , Pneumonia, Viral/complications , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL